Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
bioRxiv ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38712082

RESUMO

PARP14 is a 203 kDa multi-domain protein that is primarily known as an ADP-ribosyltransferase, and is involved in a variety of cellular functions including DNA damage, microglial activation, inflammation, and cancer progression. In addition, PARP14 is upregulated by interferon (IFN), indicating a role in the antiviral response. Furthermore, PARP14 has evolved under positive selection, again indicating that it is involved in host-pathogen conflict. We found that PARP14 is required for increased IFN-I production in response to coronavirus infection lacking ADP-ribosylhydrolase (ARH) activity and poly(I:C), however, whether it has direct antiviral function remains unclear. Here we demonstrate that the catalytic activity of PARP14 enhances IFN-I and IFN-III responses and restricts ARH-deficient murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. To determine if PARP14's antiviral functions extended beyond CoVs, we tested the ability of herpes simplex virus 1 (HSV-1) and several negative-sense RNA viruses, including vesicular stomatitis virus (VSV), Ebola virus (EBOV), and Nipah virus (NiV), to infect A549 PARP14 knockout (KO) cells. HSV-1 had increased replication in PARP14 KO cells, indicating that PARP14 restricts HSV-1 replication. In contrast, PARP14 was critical for the efficient infection of VSV, EBOV, and NiV, with EBOV infectivity at less than 1% of WT cells. A PARP14 active site inhibitor had no impact on HSV-1 or EBOV infection, indicating that its effect on these viruses was independent of its catalytic activity. These data demonstrate that PARP14 promotes IFN production and has both pro- and anti-viral functions targeting multiple viruses.

2.
Proc Natl Acad Sci U S A ; 121(15): e2320194121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568967

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since its emergence in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a recombinant SARS-CoV-2 (nsp15mut) expressing catalytically inactivated nsp15, which we show promoted increased dsRNA accumulation. Infection with SARS-CoV-2 nsp15mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI cultures.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Endorribonucleases/metabolismo , Transdução de Sinais , Antivirais
3.
J Med Chem ; 67(8): 6519-6536, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38592023

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has made it clear that further development of antiviral therapies will be needed. Here, we describe small-molecule inhibitors for SARS-CoV-2 Mac1, which counters ADP-ribosylation-mediated innate immune responses. Three high-throughput screening hits had the same 2-amide-3-methylester thiophene scaffold. We studied the compound binding mode using X-ray crystallography, allowing us to design analogues. Compound 27 (MDOLL-0229) had an IC50 of 2.1 µM and was selective for CoV Mac1 proteins after profiling for activity against a panel of viral and human proteins. The improved potency allowed testing of its effect on virus replication, and indeed, 27 inhibited replication of both murine hepatitis virus (MHV) prototypes CoV and SARS-CoV-2. Sequencing of a drug-resistant MHV identified mutations in Mac1, further demonstrating the specificity of 27. Compound 27 is the first Mac1-targeted small molecule demonstrated to inhibit coronavirus replication in a cell model.


Assuntos
Antivirais , SARS-CoV-2 , Tiofenos , Replicação Viral , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Tiofenos/farmacologia , Tiofenos/química , Tiofenos/síntese química , Replicação Viral/efeitos dos fármacos , Humanos , SARS-CoV-2/efeitos dos fármacos , Animais , Descoberta de Drogas , Camundongos , Cristalografia por Raios X , Tratamento Farmacológico da COVID-19 , Relação Estrutura-Atividade , Vírus da Hepatite Murina/efeitos dos fármacos
4.
bioRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38260573

RESUMO

All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in nonstructural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis. Within Mac1, there are several regions that are highly conserved across CoVs, including the GIF (glycine-isoleucine-phenylalanine) motif. To determine how the biochemical activities of these residues impact CoV replication, the isoleucine and the phenylalanine residues were mutated to alanine (I-A/F-A) in both recombinant Mac1 proteins and recombinant CoVs, including murine hepatitis virus (MHV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The F-A mutant proteins had ADP-ribose binding and/or hydrolysis defects that led to attenuated replication and pathogenesis in cell culture and mice. In contrast, the I-A mutations had normal enzyme activity and enhanced ADP-ribose binding. Despite increased ADP-ribose binding, I-A mutant MERS-CoV and SARS-CoV-2 were highly attenuated in both cell culture and mice, indicating that this isoleucine residue acts as a gate that controls ADP-ribose binding for efficient virus replication. These results highlight the function of this highly conserved residue and provide unique insight into how macrodomains control ADP-ribose binding and hydrolysis to promote viral replication and pathogenesis.

5.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014074

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since emerging in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a mutant recombinant SARS-CoV-2 (nsp15mut) expressing a catalytically inactive nsp15. Infection with SARS-CoV-2 nsp15 mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type (WT) virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI culture.

6.
Pathogens ; 12(10)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37887737

RESUMO

Non-structural protein 3 (nsp3) from all coronaviruses (CoVs) contains a conserved macrodomain, known as Mac1, that has been proposed as a potential therapeutic target for CoVs due to its critical role in viral pathogenesis. Mac1 is an ADP-ribose binding protein and ADP-ribosylhydrolase that promotes replication and blocks IFN responses, though the precise mechanisms it uses to carry out these functions remain unknown. Over the past 3 years following the onset of COVID-19, several groups have used high-throughput screening with multiple assays and chemical modifications to create unique chemical inhibitors of the SARS-CoV-2 Mac1 protein. Here, we summarize the current efforts to identify selective and potent inhibitors of SARS-CoV-2 Mac1.

7.
J Virol ; 97(9): e0088523, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37695054

RESUMO

ADP-ribosyltransferases (ARTs) mediate the transfer of ADP-ribose from NAD+ to protein or nucleic acid substrates. This modification can be removed by several different types of proteins, including macrodomains. Several ARTs, also known as PARPs, are stimulated by interferon indicating ADP-ribosylation is an important aspect of the innate immune response. All coronaviruses (CoVs) encode for a highly conserved macrodomain (Mac1) that is critical for CoVs to replicate and cause disease, indicating that ADP-ribosylation can effectively control coronavirus infection. Our siRNA screen indicated that PARP12 might inhibit the replication of a murine hepatitis virus (MHV) Mac1 mutant virus in bone-marrow-derived macrophages (BMDMs). To conclusively demonstrate that PARP12 is a key mediator of the antiviral response to CoVs both in cell culture and in vivo, we produced PARP12-/-mice and tested the ability of MHV A59 (hepatotropic/neurotropic) and JHM (neurotropic) Mac1 mutant viruses to replicate and cause disease in these mice. Notably, in the absence of PARP12, Mac1 mutant replication was increased in BMDMs and mice. In addition, liver pathology was also increased in A59-infected mice. However, the PARP12 knockout did not restore Mac1 mutant virus replication to WT virus levels in all cell or tissue types and did not significantly increase the lethality of Mac1 mutant viruses. These results demonstrate that while PARP12 inhibits MHV Mac1 mutant virus infection, additional PARPs or innate immune factors must contribute to the extreme attenuation of this virus in mice. IMPORTANCE Over the last decade, the importance of ADP-ribosyltransferases (ARTs), also known as PARPs, in the antiviral response has gained increased significance as several were shown to either restrict virus replication or impact innate immune responses. However, there are few studies showing ART-mediated inhibition of virus replication or pathogenesis in animal models. We found that the CoV macrodomain (Mac1) was required to prevent ART-mediated inhibition of virus replication in cell culture. Using knockout mice, we found that PARP12, an interferon-stimulated ART, was required to repress the replication of a Mac1 mutant CoV both in cell culture and in mice, demonstrating that PARP12 represses coronavirus replication. However, the deletion of PARP12 did not fully rescue Mac1 mutant virus replication or pathogenesis, indicating that multiple PARPs function to counter coronavirus infection.


Assuntos
Genes Virais , Vírus da Hepatite Murina , Mutação , Poli(ADP-Ribose) Polimerases , Replicação Viral , Animais , Camundongos , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Interferons/imunologia , Camundongos Knockout , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/crescimento & desenvolvimento , Vírus da Hepatite Murina/metabolismo , Vírus da Hepatite Murina/patogenicidade , Especificidade de Órgãos , Poli(ADP-Ribose) Polimerases/deficiência , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Replicação Viral/genética , Linhagem Celular
8.
Pathogens ; 12(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37764890

RESUMO

The continued circulation of SARS-CoV-2 and the increasing frequency of coronavirus (CoV) outbreaks over the decades demonstrates the enduring threat that the CoV family poses. There remains a significant need to develop tools to monitor and prevent the spread of these viruses. We tested blood-stabilization reagents from two commercially available blood collection tubes (BCTs) for their ability to inactivate three different coronaviruses (MHV, OC-43, and SARS-CoV-2) and stabilize their RNA. Both Cell-Free DNA BCT® (cfDNA) and Cyto-Chex® BCT (CytoChex) reagents reduced infectious virus in the buffer to below the limit of detection within 18 h of treatment, with some conditions showing this effect in as little as 3 h. CytoChex had more potent activity than cfDNA as in all cases it more rapidly reduced the actively replicating virus to the limit of detection. Despite the rapid inactivation of the virus, both reagents effectively preserved viral RNA for 7 days. Finally, both reagents accelerated viral inactivation in blood compared to the control samples. These results indicate that cfDNA and CytoChex could be used to inactivate and preserve CoV RNA for detection and further testing.

9.
Proc Natl Acad Sci U S A ; 120(35): e2302083120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37607224

RESUMO

Several coronavirus (CoV) encoded proteins are being evaluated as targets for antiviral therapies for COVID-19. Included in these drug targets is the conserved macrodomain, or Mac1, an ADP-ribosylhydrolase and ADP-ribose binding protein encoded as a small domain at the N terminus of nonstructural protein 3. Utilizing point mutant recombinant viruses, Mac1 was shown to be critical for both murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV virulence. However, as a potential drug target, it is imperative to understand how a complete Mac1 deletion impacts the replication and pathogenesis of different CoVs. To this end, we created recombinant bacterial artificial chromosomes (BACs) containing complete Mac1 deletions (ΔMac1) in MHV, MERS-CoV, and SARS-CoV-2. While we were unable to recover infectious virus from MHV or MERS-CoV ΔMac1 BACs, SARS-CoV-2 ΔMac1 was readily recovered from BAC transfection, indicating a stark difference in the requirement for Mac1 between different CoVs. Furthermore, SARS-CoV-2 ΔMac1 replicated at or near wild-type levels in multiple cell lines susceptible to infection. However, in a mouse model of severe infection, ΔMac1 was quickly cleared causing minimal pathology without any morbidity. ΔMac1 SARS-CoV-2 induced increased levels of interferon (IFN) and IFN-stimulated gene expression in cell culture and mice, indicating that Mac1 blocks IFN responses which may contribute to its attenuation. ΔMac1 infection also led to a stark reduction in inflammatory monocytes and neutrophils. These results demonstrate that Mac1 only minimally impacts SARS-CoV-2 replication, unlike MHV and MERS-CoV, but is required for SARS-CoV-2 pathogenesis and is a unique antiviral drug target.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Vírus da Hepatite Murina , Animais , Camundongos , SARS-CoV-2/genética , Técnicas de Cultura de Células , Linhagem Celular , Antivirais , Coronavírus da Síndrome Respiratória do Oriente Médio/genética
10.
bioRxiv ; 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37398292

RESUMO

ADP-ribosyltransferases (ARTs) mediate the transfer of ADP-ribose from NAD + to protein or nucleic acid substrates. This modification can be removed by several different types of proteins, including macrodomains. Several ARTs, also known as PARPs, are stimulated by interferon, indicating ADP-ribosylation is an important aspect of the innate immune response. All coronaviruses (CoVs) encode for a highly conserved macrodomain (Mac1) that is critical for CoVs to replicate and cause disease, indicating that ADP-ribosylation can effectively control coronavirus infection. Our siRNA screen indicated that PARP12 might inhibit the replication of a MHV Mac1 mutant virus in bone-marrow derived macrophages (BMDMs). To conclusively demonstrate that PARP12 is a key mediator of the antiviral response to CoVs both in cell culture and in vivo , we produced PARP12 -/- mice and tested the ability of MHV A59 (hepatotropic/neurotropic) and JHM (neurotropic) Mac1 mutant viruses to replicate and cause disease in these mice. Notably, in the absence of PARP12, Mac1 mutant replication was increased in BMDMs and in mice. In addition, liver pathology was also increased in A59 infected mice. However, the PARP12 knockout did not restore Mac1 mutant virus replication to WT virus levels in all cell or tissue types and did not significantly increase the lethality of Mac1 mutant viruses. These results demonstrate that while PARP12 inhibits MHV Mac1 mutant virus infection, additional PARPs or innate immune factors must contribute to the extreme attenuation of this virus in mice. IMPORTANCE: Over the last decade, the importance of ADP-ribosyltransferases (ARTs), also known as PARPs, in the antiviral response has gained increased significance as several were shown to either restrict virus replication or impact innate immune responses. However, there are few studies showing ART-mediated inhibition of virus replication or pathogenesis in animal models. We found that the CoV macrodomain (Mac1) was required to prevent ART-mediated inhibition of virus replication in cell culture. Here, using knockout mice, we found that PARP12, an interferon-stimulated ART, was required to repress the replication of a Mac1 mutant CoV both in cell culture and in mice, demonstrating that PARP12 represses coronavirus replication. However, the deletion of PARP12 did not fully rescue Mac1 mutant virus replication or pathogenesis, indicating that multiple PARPs function to counter coronavirus infection.

11.
bioRxiv ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066301

RESUMO

Several coronavirus (CoV) encoded proteins are being evaluated as targets for antiviral therapies for COVID-19. Included in this set of proteins is the conserved macrodomain, or Mac1, an ADP-ribosylhydrolase and ADP-ribose binding protein. Utilizing point mutant recombinant viruses, Mac1 was shown to be critical for both murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV virulence. However, as a potential drug target, it is imperative to understand how a complete Mac1 deletion impacts the replication and pathogenesis of different CoVs. To this end, we created recombinant bacterial artificial chromosomes (BACs) containing complete Mac1 deletions (ΔMac1) in MHV, MERS-CoV, and SARS-CoV-2. While we were unable to recover infectious virus from MHV or MERS-CoV ΔMac1 BACs, SARS-CoV-2 ΔMac1 was readily recovered from BAC transfection, indicating a stark difference in the requirement for Mac1 between different CoVs. Furthermore, SARS-CoV-2 ΔMac1 replicated at or near wild-type levels in multiple cell lines susceptible to infection. However, in a mouse model of severe infection, ΔMac1 was quickly cleared causing minimal pathology without any morbidity. ΔMac1 SARS-CoV-2 induced increased levels of interferon (IFN) and interferon-stimulated gene (ISG) expression in cell culture and mice, indicating that Mac1 blocks IFN responses which may contribute to its attenuation. ΔMac1 infection also led to a stark reduction in inflammatory monocytes and neutrophils. These results demonstrate that Mac1 only minimally impacts SARS-CoV-2 replication, unlike MHV and MERS-CoV, but is required for SARS-CoV-2 pathogenesis and is a unique antiviral drug target. SIGNIFICANCE: All CoVs, including SARS-CoV-2, encode for a conserved macrodomain (Mac1) that counters host ADP-ribosylation. Prior studies with SARS-CoV-1 and MHV found that Mac1 blocks IFN production and promotes CoV pathogenesis, which has prompted the development of SARS-CoV-2 Mac1 inhibitors. However, development of these compounds into antivirals requires that we understand how SARS-CoV-2 lacking Mac1 replicates and causes disease in vitro and in vivo . Here we found that SARS-CoV-2 containing a complete Mac1 deletion replicates normally in cell culture but induces an elevated IFN response, has reduced viral loads in vivo , and does not cause significant disease in mice. These results will provide a roadmap for testing Mac1 inhibitors, help identify Mac1 functions, and open additional avenues for coronavirus therapies.

12.
Microbiol Spectr ; 11(1): e0194322, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36537798

RESUMO

We utilized a high-throughput cell-based assay to screen several chemical libraries for inhibitors of herpes simplex virus 1 (HSV-1) gene expression. From this screen, four aurora kinase inhibitors were identified that potently reduced gene expression during HSV-1 lytic infection. HSV-1 is known to interact with cellular kinases to regulate gene expression by modulating the phosphorylation and/or activities of viral and cellular proteins. To date, the role of aurora kinases in HSV-1 lytic infection has not been reported. We demonstrated that three aurora kinase inhibitors strongly reduced the transcript levels of immediate-early (IE) genes ICP0, ICP4, and ICP27 and impaired HSV-1 protein expression from all classes of HSV-1, including ICP0, ICP4, ICP8, and gC. These restrictions caused by the aurora kinase inhibitors led to potent reductions in HSV-1 viral replication. The compounds TAK 901, JNJ 7706621, and PF 03814735 decreased HSV-1 titers by 4,500-, 13,200-, and 8,400-fold, respectively, when present in a low micromolar range. The antiviral activity of these compounds correlated with an apparent decrease in histone H3 phosphorylation at serine 10 (H3S10ph) during viral infection, suggesting that the phosphorylation status of H3 influences HSV-1 gene expression. Furthermore, we demonstrated that the aurora kinase inhibitors also impaired the replication of other RNA and DNA viruses. These inhibitors significantly reduced yields of vaccinia virus (a poxvirus, double-stranded DNA, cytoplasmic replication) and mouse hepatitis virus (a coronavirus, positive-sense single-strand RNA [ssRNA]), whereas vesicular stomatitis virus (rhabdovirus, negative-sense ssRNA) yields were unaffected. These results indicated that the activities of aurora kinases play pivotal roles in the life cycles of diverse viruses. IMPORTANCE We have demonstrated that aurora kinases play a role during HSV-1 lytic infection. Three aurora kinase inhibitors significantly impaired HSV-1 immediate-early gene expression. This led to a potent reduction in HSV-1 protein expression and viral replication. Together, our results illustrate a novel role for aurora kinases in the HSV-1 lytic cycle and demonstrate that aurora kinase inhibitors can restrict HSV-1 replication. Furthermore, these aurora kinase inhibitors also reduced the replication of murine coronavirus and vaccinia virus, suggesting that multiple viral families utilize the aurora kinases for their own replication.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Vírus de RNA , Animais , Camundongos , Herpesvirus Humano 1/genética , Proteínas Imediatamente Precoces/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Linhagem Celular , Herpes Simples/genética , DNA/metabolismo , RNA/metabolismo , Estágios do Ciclo de Vida
13.
bioRxiv ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38234730

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has made it clear that further development of antiviral therapies will be needed to combat additional SARS-CoV-2 variants or novel CoVs. Here, we describe small molecule inhibitors for SARS-CoV-2 Mac1, which counters ADP-ribosylation mediated innate immune responses. The compounds inhibiting Mac1 were discovered through high-throughput screening (HTS) using a protein FRET-based competition assay and the best hit compound had an IC50 of 14 µM. Three validated HTS hits have the same 2-amide-3-methylester thiophene scaffold and the scaffold was selected for structure-activity relationship (SAR) studies through commercial and synthesized analogs. We studied the compound binding mode in detail using X-ray crystallography and this allowed us to focus on specific features of the compound and design analogs. Compound 27 (MDOLL-0229) had an IC50 of 2.1 µM and was generally selective for CoV Mac1 proteins after profiling for activity against a panel of viral and human ADP-ribose binding proteins. The improved potency allowed testing of its effect on virus replication and indeed, 27 inhibited replication of both MHVa prototype CoV, and SARS-CoV-2. Furthermore, sequencing of a drug-resistant MHV identified mutations in Mac1, further demonstrating the specificity of 27. Compound 27 is the first Mac1 targeted small molecule demonstrated to inhibit coronavirus replication in a cell model. This, together with its well-defined binding mode, makes 27 a good candidate for further hit/lead-optimization efforts.

15.
Proc Natl Acad Sci U S A ; 119(21): e2123208119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35594398

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into humans in 2012, causing highly lethal respiratory disease. The severity of disease may be, in part, because MERS-CoV is adept at antagonizing early innate immune pathways­interferon (IFN) production and signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L)­activated in response to viral double-stranded RNA (dsRNA) generated during genome replication. This is in contrast to severe acute respiratory syndrome CoV-2 (SARS-CoV-2), which we recently reported to activate PKR and RNase L and, to some extent, IFN signaling. We previously found that MERS-CoV accessory proteins NS4a (dsRNA binding protein) and NS4b (phosphodiesterase) could weakly suppress these pathways, but ablation of each had minimal effect on virus replication. Here we investigated the antagonist effects of the conserved coronavirus endoribonuclease (EndoU), in combination with NS4a or NS4b. Inactivation of EndoU catalytic activity alone in a recombinant MERS-CoV caused little if any effect on activation of the innate immune pathways during infection. However, infection with recombinant viruses containing combined mutations with inactivation of EndoU and deletion of NS4a or inactivation of the NS4b phosphodiesterase promoted robust activation of dsRNA-induced innate immune pathways. This resulted in at least tenfold attenuation of replication in human lung­derived A549 and primary nasal cells. Furthermore, replication of these recombinant viruses could be rescued to the level of wild-type MERS-CoV by knockout of host immune mediators MAVS, PKR, or RNase L. Thus, EndoU and accessory proteins NS4a and NS4b together suppress dsRNA-induced innate immunity during MERS-CoV infection in order to optimize viral replication.


Assuntos
COVID-19 , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Infecções por Coronavirus/imunologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células Epiteliais/metabolismo , Humanos , Imunidade Inata , Pulmão/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Mucosa Nasal , SARS-CoV-2/patogenicidade , Endorribonucleases Específicas de Uridilato
16.
Antiviral Res ; 203: 105344, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35598780

RESUMO

The emergence of several zoonotic viruses in the last twenty years, especially the pandemic outbreak of SARS-CoV-2, has exposed a dearth of antiviral drug therapies for viruses with pandemic potential. Developing a diverse drug portfolio will be critical to rapidly respond to novel coronaviruses (CoVs) and other viruses with pandemic potential. Here we focus on the SARS-CoV-2 conserved macrodomain (Mac1), a small domain of non-structural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that cleaves mono-ADP-ribose (MAR) from target proteins, protects the virus from the anti-viral effects of host ADP-ribosyltransferases, and is critical for the replication and pathogenesis of CoVs. In this study, a luminescent-based high-throughput assay was used to screen ∼38,000 small molecules for those that could inhibit Mac1-ADP-ribose binding. We identified 5 compounds amongst 3 chemotypes that inhibit SARS-CoV-2 Mac1-ADP-ribose binding in multiple assays with IC50 values less than 100 µM, inhibit ADP-ribosylhydrolase activity, and have evidence of direct Mac1 binding. These chemotypes are strong candidates for further derivatization into highly effective Mac1 inhibitors.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Adenosina Difosfato Ribose/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Proteínas não Estruturais Virais/química
17.
Bioorg Med Chem ; 67: 116788, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35597097

RESUMO

A series of amino acid based 7H-pyrrolo[2,3-d]pyrimidines were designed and synthesized to discern the structure activity relationships against the SARS-CoV-2 nsp3 macrodomain (Mac1), an ADP-ribosylhydrolase that is critical for coronavirus replication and pathogenesis. Structure activity studies identified compound 15c as a low-micromolar inhibitor of Mac1 in two ADP-ribose binding assays. This compound also demonstrated inhibition in an enzymatic assay of Mac1 and displayed a thermal shift comparable to ADPr in the melting temperature of Mac1 supporting binding to the target protein. A structural model reproducibly predicted a binding mode where the pyrrolo pyrimidine forms a hydrogen bonding network with Asp22 and the amide backbone NH of Ile23 in the adenosine binding pocket and the carboxylate forms hydrogen bonds to the amide backbone of Phe157 and Asp156, part of the oxyanion subsite of Mac1. Compound 15c also demonstrated notable selectivity for coronavirus macrodomains when tested against a panel of ADP-ribose binding proteins. Together, this study identified several low MW, low µM Mac1 inhibitors to use as small molecule chemical probes for this potential anti-viral target and offers starting points for further optimization.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Adenosina Difosfato Ribose/metabolismo , Amidas , Humanos , Domínios Proteicos
18.
bioRxiv ; 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35262075

RESUMO

The emergence of several zoonotic viruses in the last twenty years, especially the pandemic outbreak of SARS-CoV-2, has exposed a dearth of antiviral drug therapies for viruses with pandemic potential. Developing a diverse drug portfolio will be critical for our ability to rapidly respond to novel coronaviruses (CoVs) and other viruses with pandemic potential. Here we focus on the SARS-CoV-2 conserved macrodomain (Mac1), a small domain of non-structural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that cleaves mono-ADP-ribose (MAR) from target proteins, protects the virus from the anti-viral effects of host ADP-ribosyltransferases, and is critical for the replication and pathogenesis of CoVs. In this study, a luminescent-based high-throughput assay was used to screen ∼38,000 small molecules for those that could inhibit Mac1-ADP-ribose binding. We identified 5 compounds amongst 3 chemotypes that inhibit SARS-CoV-2 Mac1-ADP-ribose binding in multiple assays with IC 50 values less than 100 µ M, inhibit ADP-ribosylhydrolase activity, and have evidence of direct Mac1 binding. These chemotypes are strong candidates for further derivatization into highly effective Mac1 inhibitors.

19.
bioRxiv ; 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35262078

RESUMO

A series of amino acid based 7H -pyrrolo[2,3- d ]pyrimidines were designed and synthesized to discern the structure activity relationships against the SARS-CoV-2 nsp3 macrodomain (Mac1), an ADP-ribosylhydrolase that is critical for coronavirus replication and pathogenesis. Structure activity studies identified compound 15c as a low-micromolar inhibitor of Mac1 in two ADP-ribose binding assays. This compound also demonstrated inhibition in an enzymatic assay of Mac1 and displayed a thermal shift comparable to ADPr in the melting temperature of Mac1 supporting binding to the target protein. A structural model reproducibly predicted a binding mode where the pyrrolo pyrimidine forms a hydrogen bonding network with Asp 22 and the amide backbone NH of Ile 23 in the adenosine binding pocket and the carboxylate forms hydrogen bonds to the amide backbone of Phe 157 and Asp 156 , part of the oxyanion subsite of Mac1. Compound 15c also demonstrated notable selectivity for coronavirus macrodomains when tested against a panel of ADP-ribose binding proteins. Together, this study identified several low MW, low µM Mac1 inhibitors to use as small molecule chemical probes for this potential anti-viral target and offers starting points for further optimization.

20.
Pathogens ; 11(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35056042

RESUMO

Emerging and re-emerging viral diseases pose continuous public health threats, and effective control requires a combination of non-pharmacologic interventions, treatment with antivirals, and prevention with vaccines. The COVID-19 pandemic has demonstrated that the world was least prepared to provide effective treatments. This lack of preparedness has been due, in large part, to a lack of investment in developing a diverse portfolio of antiviral agents, particularly those ready to combat viruses of pandemic potential. Here, we focus on a drug target called macrodomain that is critical for the replication and pathogenesis of alphaviruses and coronaviruses. Some mutations in alphavirus and coronaviral macrodomains are not tolerated for virus replication. In addition, the coronavirus macrodomain suppresses host interferon responses. Therefore, macrodomain inhibitors have the potential to block virus replication and restore the host's protective interferon response. Viral macrodomains offer an attractive antiviral target for developing direct acting antivirals because they are highly conserved and have a structurally well-defined (druggable) binding pocket. Given that this target is distinct from the existing RNA polymerase and protease targets, a macrodomain inhibitor may complement current approaches, pre-empt the threat of resistance and offer opportunities to develop combination therapies for combating COVID-19 and future viral threats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA